|
23 | 23 | from scipy.sparse import csr_matrix |
24 | 24 | from sklearn.datasets import fetch_openml |
25 | 25 |
|
26 | | -try: |
27 | | - import kaggle |
28 | | - |
29 | | - kaggle_is_imported = True |
30 | | -except (ImportError, OSError, ValueError): |
31 | | - kaggle_is_imported = False |
32 | | - |
33 | 26 |
|
34 | 27 | def retrieve(url: str, filename: str) -> None: |
35 | 28 | if os.path.isfile(filename): |
@@ -95,29 +88,3 @@ def download_and_read_csv(url: str, raw_data_cache_dir: str, **reading_kwargs): |
95 | 88 | retrieve(url, local_path) |
96 | 89 | data = pd.read_csv(local_path, **reading_kwargs) |
97 | 90 | return data |
98 | | - |
99 | | - |
100 | | -def download_kaggle_files( |
101 | | - kaggle_type: str, kaggle_name: str, filenames: List[str], raw_data_cache_dir: str |
102 | | -): |
103 | | - if not kaggle_is_imported: |
104 | | - raise ValueError( |
105 | | - "Kaggle API is not available. Please, check if 'kaggle' package and Kaggle API key are installed." |
106 | | - ) |
107 | | - api = kaggle.KaggleApi() |
108 | | - api.authenticate() |
109 | | - |
110 | | - if kaggle_type == "competition": |
111 | | - download_method = api.competition_download_file |
112 | | - elif kaggle_type == "dataset": |
113 | | - download_method = api.dataset_download_file |
114 | | - else: |
115 | | - raise ValueError( |
116 | | - f"Unknown {kaggle_type} type for " '"download_kaggle_files" function.' |
117 | | - ) |
118 | | - |
119 | | - output_file_paths = {} |
120 | | - for filename in filenames: |
121 | | - download_method(kaggle_name, filename, raw_data_cache_dir) |
122 | | - output_file_paths[filename] = os.path.join(raw_data_cache_dir, filename) |
123 | | - return output_file_paths |
0 commit comments