|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# Se importan las librerías a usar |
| 3 | +from freenect import* |
| 4 | +from numpy import* |
| 5 | +from cv2 import* |
| 6 | +from time import* |
| 7 | + |
| 8 | +def buscar_pelotasVN(): #Función principal para llamar desde programa principal |
| 9 | + #para transmisión serial a CORTEX |
| 10 | + |
| 11 | + #Funcion de Adquisicion RGB kinect |
| 12 | + def frame_RGB(): |
| 13 | + array,_ = sync_get_video() |
| 14 | + array = cvtColor(array,COLOR_RGB2BGR) |
| 15 | + return array |
| 16 | + |
| 17 | + #Funcion para adquisicion de profundidad (depth) Kinect |
| 18 | + def frame_depth(): |
| 19 | + array,_ = sync_get_depth() |
| 20 | + return array |
| 21 | + |
| 22 | + #Función que retorna imagen binaria donde lo verde es blanco |
| 23 | + #y el resto es negro |
| 24 | + def filtLAB_Verde(img): |
| 25 | + lab = cvtColor(img, COLOR_BGR2Lab) |
| 26 | + # pongo los valores verdes para hacer la mascara |
| 27 | + #verde_bajo = array([80, 132, 0]) -> im1 |
| 28 | + #verde_alto = array([244, 153, 110]) -> im1 |
| 29 | + #verde_bajo = array([52, 141, 21]) -> im2 |
| 30 | + #verde_alto = array([196, 156, 94]) -> im2 |
| 31 | + verde_bajo = array([20, 76, 132]) |
| 32 | + verde_alto = array([240, 121, 215]) |
| 33 | + |
| 34 | + mascara = inRange(lab, verde_bajo, verde_alto) |
| 35 | + |
| 36 | + er = ones((7,7),uint8) #matriz para erosion |
| 37 | + |
| 38 | + dil = array([[0,0,0,1,0,0,0], |
| 39 | + [0,1,1,1,1,1,0], |
| 40 | + [0,1,1,1,1,1,0], |
| 41 | + [1,1,1,1,1,1,1], |
| 42 | + [0,1,1,1,1,1,0], |
| 43 | + [0,1,1,1,1,1,0], |
| 44 | + [0,0,0,1,0,0,0]],uint8) #matriz para dilatacion |
| 45 | + |
| 46 | + mascara = erode(mascara,er,iterations = 1) #aplico erosion |
| 47 | + mascara = dilate(mascara,dil,iterations = 1) #aplico dilatacion |
| 48 | + return mascara |
| 49 | + |
| 50 | + def filtLAB_Naranja(img): |
| 51 | + lab = cvtColor(img, COLOR_BGR2Lab) |
| 52 | + # pongo los valores de rango naranja para hacer la máscara |
| 53 | + #naranja_bajo = array([51, 158, 69]) -> im1 |
| 54 | + #naranja_alto = array([193, 202, 112]) -> im1 |
| 55 | + #naranja_bajo = array([44, 166, 71]) -> im2 |
| 56 | + #naranja_alto = array([170, 205, 106]) -> im2 |
| 57 | + naranja_bajo = array([20, 136, 152]) |
| 58 | + naranja_alto = array([235, 192, 198]) |
| 59 | + |
| 60 | + mascara = inRange(lab, naranja_bajo, naranja_alto) |
| 61 | + |
| 62 | + er = ones((7,7),uint8) #matriz para erosion |
| 63 | + |
| 64 | + dil = array([[0,0,0,1,0,0,0], |
| 65 | + [0,1,1,1,1,1,0], |
| 66 | + [0,1,1,1,1,1,0], |
| 67 | + [1,1,1,1,1,1,1], |
| 68 | + [0,1,1,1,1,1,0], |
| 69 | + [0,1,1,1,1,1,0], |
| 70 | + [0,0,0,1,0,0,0]],uint8) #matriz para dilatacion |
| 71 | + |
| 72 | + # matriz para erosión y dilación |
| 73 | + mascara = erode(mascara,er,iterations = 1) #aplico erosión |
| 74 | + mascara = dilate(mascara,dil,iterations = 2)#aplico dilatacion |
| 75 | + return mascara |
| 76 | + |
| 77 | + |
| 78 | + |
| 79 | + #Variables para retornar |
| 80 | + #resultado=[c1, c2, x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8] |
| 81 | + # Color_|________Coordenada_X_(xm)_______|_____Coordenada_Y_(ym)________| |
| 82 | + # Arreglo con la información que se envía de manera serial |
| 83 | + |
| 84 | + |
| 85 | + |
| 86 | + #Parte principal |
| 87 | + # init=time() #medir tiempo |
| 88 | + |
| 89 | + frame = frame_RGB() #leo frame |
| 90 | + depth = frame_depth() #leo profundidad depth |
| 91 | + depth = resize(depth,(0,0),fx=0.5, fy=0.5) |
| 92 | + |
| 93 | + mascaraV = resize(frame, (0,0), fx=0.5, fy=0.5) |
| 94 | + mascaraN = mascaraV |
| 95 | + frame = mascaraV |
| 96 | + frame = medianBlur(frame,3) |
| 97 | + |
| 98 | + color=time() |
| 99 | + mascaraV = filtLAB_Verde(frame) |
| 100 | + mascaraN = filtLAB_Naranja(frame) |
| 101 | + |
| 102 | + # tc=time()-color #tiempo de filtro de color |
| 103 | + |
| 104 | + #Encuentro los círculos que estén en detección de bordes |
| 105 | + circuloV = HoughCircles(mascaraV,HOUGH_GRADIENT, 1, 40, param1=60, |
| 106 | + param2=24,minRadius=0,maxRadius=0) |
| 107 | + |
| 108 | + circuloN = HoughCircles(mascaraN,HOUGH_GRADIENT, 1, 40, param1=60, |
| 109 | + param2=24,minRadius=0,maxRadius=0) |
| 110 | + |
| 111 | + #Para obtener la distancia depV y depN se utilizó la información de esta |
| 112 | + #página: https://openkinect.org/wiki/Imaging_Information (Agosto 18) |
| 113 | + #Esa regresión se le hicieron modificaciones para disminuir el error |
| 114 | + #hallando una aproximación de la forma 1/(Bx+C), donde x es el valor |
| 115 | + #en bytes obtenido por el sensor |
| 116 | + |
| 117 | + #Para la alineación |
| 118 | + cteX=9 |
| 119 | + cteY=9 #Valores alineación RGB y Depth |
| 120 | + #circle(rgb, (80-cteX,50+cteY),40,(0,0,255),5) |
| 121 | + |
| 122 | + centimg = round(frame.shape[1]/2) #centro de la imagen donde son 0° |
| 123 | + #horizontal |
| 124 | + centVert= round(frame.shape[0]/2) #centro vertical |
| 125 | + |
| 126 | + #Si encontro al menos un ciculo |
| 127 | + if circuloV is not None: |
| 128 | + circuloV = circuloV.astype("int") |
| 129 | + xV = circuloV[0,0,0] |
| 130 | + xVd=xV + cteX |
| 131 | + yV = circuloV[0,0,1] |
| 132 | + yVd=yV + cteY |
| 133 | + verde=True |
| 134 | + if xVd >= frame.shape[1]: |
| 135 | + xVd = 319 |
| 136 | + if yVd >= frame.shape[0]: |
| 137 | + yVd = 239 |
| 138 | + #para obtener dato es en coordenada (y,x)->(480x640) |
| 139 | + depV = 1/(depth[yVd,xVd]*(-0.0028642) + 3.15221) |
| 140 | + depV = round(depV,4) #cuatro cifras decimales |
| 141 | + if depV < 0: |
| 142 | + depV=0 |
| 143 | + #depV = ((4-0.8)/2048)*(depth[xVd,yVd]+1)+0.8 aprox propia |
| 144 | + else: |
| 145 | + verde = False |
| 146 | + |
| 147 | + if circuloN is not None: |
| 148 | + circuloN = circuloN.astype("int") |
| 149 | + xN = circuloN[0,0,0] |
| 150 | + xNd=xN + cteX |
| 151 | + yN = circuloN[0,0,1] |
| 152 | + yNd=yN + cteY |
| 153 | + naranja=True |
| 154 | + if xNd >= frame.shape[1]: |
| 155 | + xNd = 319 |
| 156 | + if yNd >= frame.shape[0]: |
| 157 | + yNd = 239 |
| 158 | + |
| 159 | + #para obtener dato es en coordenada (y,x)->(480x640) |
| 160 | + depN = 1/(depth[yNd,xNd]*(-0.0028642) + 3.15221) |
| 161 | + depN = round(depN,4) #cuatro cirfras decimales |
| 162 | + if depN < 0: |
| 163 | + depN=0 |
| 164 | + else: |
| 165 | + naranja = False |
| 166 | + |
| 167 | + if naranja or (verde and naranja): |
| 168 | + c1,c2=1,0 |
| 169 | + bethaN = abs(centVert - yNd)*0.17916 #0.17916 son °/Px en vertical (43°/240) |
| 170 | + bethaN = (bethaN*pi)/180 |
| 171 | + depN = depN*cos(bethaN) # centro valor vertical para ubicar la distancia en 0° Vertical |
| 172 | + alphaN = (xNd - centimg)*0.1781 #0.1781 son los grados por pixel (°/px) 320 x 240 |
| 173 | + alphaN = (alphaN*pi)/180 # en radianes |
| 174 | + xm = depN*sin(alphaN) |
| 175 | + ym = depN*cos(alphaN) |
| 176 | + elif verde and (not naranja): |
| 177 | + c1,c2=0,1 |
| 178 | + bethaV = abs(centVert - yVd)*0.17916 #0.17916 son °/Px en vertical (43°/240) |
| 179 | + bethaV = (bethaV*pi)/180 |
| 180 | + depV = depV*cos(bethaV) # centro valor vertical para ubicar la distancia en 0° Vertical |
| 181 | + alphaV = (xVd - centimg)*0.1781 #0.1781 son los grados por pixel (°/px) |
| 182 | + alphaV = (alphaV*pi)/180 # en radianes |
| 183 | + xm = depV*sin(alphaV) |
| 184 | + ym = depV*cos(alphaV) |
| 185 | + else: |
| 186 | + c1,c2=0,0 |
| 187 | + xm,ym=0,0 |
| 188 | + t=time()-init |
| 189 | +## imshow('VERDE',mascaraV) |
| 190 | +## waitKey(1) |
| 191 | +## imshow('NARANJA',mascaraN) |
| 192 | +## waitKey(1) |
| 193 | + print('FIN',t,'EDGE',te,'COLOR',tc) |
| 194 | + print(c1,c2,xm,ym) |
| 195 | + return c1,c2,xm,ym |
0 commit comments