1515from .array import *
1616
1717def mean (a , weights = None , dim = None ):
18+ """
19+ Calculate mean along a given dimension.
20+
21+ Parameters
22+ ----------
23+ a: af.Array
24+ The input array.
25+
26+ weights: optional: af.Array. default: None.
27+ Array to calculate the weighted mean. Must match size of the
28+ input array.
29+
30+ dim: optional: int. default: None.
31+ The dimension for which to obtain the mean from input data.
32+
33+ Returns
34+ -------
35+ output: af.Array
36+ Array containing the mean of the input array along a given
37+ dimension.
38+ """
1839 if dim is not None :
1940 out = Array ()
2041
@@ -39,6 +60,31 @@ def mean(a, weights=None, dim=None):
3960 return real if imag == 0 else real + imag * 1j
4061
4162def var (a , isbiased = False , weights = None , dim = None ):
63+ """
64+ Calculate variance along a given dimension.
65+
66+ Parameters
67+ ----------
68+ a: af.Array
69+ The input array.
70+
71+ isbiased: optional: Boolean. default: False.
72+ Boolean denoting population variance (false) or sample
73+ variance (true).
74+
75+ weights: optional: af.Array. default: None.
76+ Array to calculate for the weighted mean. Must match size of
77+ the input array.
78+
79+ dim: optional: int. default: None.
80+ The dimension for which to obtain the variance from input data.
81+
82+ Returns
83+ -------
84+ output: af.Array
85+ Array containing the variance of the input array along a given
86+ dimension.
87+ """
4288 if dim is not None :
4389 out = Array ()
4490
@@ -63,6 +109,24 @@ def var(a, isbiased=False, weights=None, dim=None):
63109 return real if imag == 0 else real + imag * 1j
64110
65111def stdev (a , dim = None ):
112+ """
113+ Calculate standard deviation along a given dimension.
114+
115+ Parameters
116+ ----------
117+ a: af.Array
118+ The input array.
119+
120+ dim: optional: int. default: None.
121+ The dimension for which to obtain the standard deviation from
122+ input data.
123+
124+ Returns
125+ -------
126+ output: af.Array
127+ Array containing the standard deviation of the input array
128+ along a given dimension.
129+ """
66130 if dim is not None :
67131 out = Array ()
68132 safe_call (backend .get ().af_stdev (c_pointer (out .arr ), a .arr , c_int_t (dim )))
@@ -76,6 +140,26 @@ def stdev(a, dim=None):
76140 return real if imag == 0 else real + imag * 1j
77141
78142def cov (a , isbiased = False , dim = None ):
143+ """
144+ Calculate covariance along a given dimension.
145+
146+ Parameters
147+ ----------
148+ a: af.Array
149+ The input array.
150+
151+ isbiased: optional: Boolean. default: False.
152+ Boolean denoting whether biased estimate should be taken.
153+
154+ dim: optional: int. default: None.
155+ The dimension for which to obtain the covariance from input data.
156+
157+ Returns
158+ -------
159+ output: af.Array
160+ Array containing the covariance of the input array along a
161+ given dimension.
162+ """
79163 if dim is not None :
80164 out = Array ()
81165 safe_call (backend .get ().af_cov (c_pointer (out .arr ), a .arr , isbiased , c_int_t (dim )))
@@ -89,6 +173,23 @@ def cov(a, isbiased=False, dim=None):
89173 return real if imag == 0 else real + imag * 1j
90174
91175def median (a , dim = None ):
176+ """
177+ Calculate median along a given dimension.
178+
179+ Parameters
180+ ----------
181+ a: af.Array
182+ The input array.
183+
184+ dim: optional: int. default: None.
185+ The dimension for which to obtain the median from input data.
186+
187+ Returns
188+ -------
189+ output: af.Array
190+ Array containing the median of the input array along a
191+ given dimension.
192+ """
92193 if dim is not None :
93194 out = Array ()
94195 safe_call (backend .get ().af_median (c_pointer (out .arr ), a .arr , c_int_t (dim )))
@@ -102,6 +203,22 @@ def median(a, dim=None):
102203 return real if imag == 0 else real + imag * 1j
103204
104205def corrcoef (x , y ):
206+ """
207+ Calculate the correlation coefficient of the input arrays.
208+
209+ Parameters
210+ ----------
211+ x: af.Array
212+ The first input array.
213+
214+ y: af.Array
215+ The second input array.
216+
217+ Returns
218+ -------
219+ output: af.Array
220+ Array containing the correlation coefficient of the input arrays.
221+ """
105222 real = c_double_t (0 )
106223 imag = c_double_t (0 )
107224 safe_call (backend .get ().af_corrcoef (c_pointer (real ), c_pointer (imag ), x .arr , y .arr ))
0 commit comments