@@ -59,7 +59,6 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
5959 column_transformers : List [Tuple [str , BaseEstimator , List [int ]]] = []
6060
6161 numerical_pipeline = 'passthrough'
62- categorical_pipeline = 'passthrough'
6362 encode_pipeline = 'passthrough'
6463
6564 if len (preprocessors ['numerical' ]) > 0 :
@@ -68,12 +67,6 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
6867 column_transformers .append (
6968 ('numerical_pipeline' , numerical_pipeline , X ['dataset_properties' ]['numerical_columns' ])
7069 )
71- if len (preprocessors ['categorical' ]) > 0 :
72- categorical_pipeline = make_pipeline (* preprocessors ['categorical' ])
73-
74- column_transformers .append (
75- ('categorical_pipeline' , categorical_pipeline , X ['dataset_properties' ]['categorical_columns' ])
76- )
7770
7871 if len (preprocessors ['encode' ]) > 0 :
7972 encode_pipeline = make_pipeline (* preprocessors ['encode' ])
@@ -82,6 +75,12 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> "TabularColumnTransformer":
8275 ('encode_pipeline' , encode_pipeline , X ['encode_columns' ])
8376 )
8477
78+ # if len(preprocessors['categorical']) > 0:
79+ # categorical_pipeline = make_pipeline(*preprocessors['categorical'])
80+ # column_transformers.append(
81+ # ('categorical_pipeline', categorical_pipeline, X['dataset_properties']['categorical_columns'])
82+ # )
83+
8584 # in case the preprocessing steps are disabled
8685 # i.e, NoEncoder for categorical, we want to
8786 # let the data in categorical columns pass through
0 commit comments