diff --git a/packages/tasks/src/model-libraries-snippets.ts b/packages/tasks/src/model-libraries-snippets.ts index f6391cbe41..0a68f3f198 100644 --- a/packages/tasks/src/model-libraries-snippets.ts +++ b/packages/tasks/src/model-libraries-snippets.ts @@ -156,23 +156,22 @@ pred_df = pipeline.predict_df( return [installSnippet, exampleSnippet]; }; -export const contexttab = (): string[] => { - const installSnippet = `pip install git+https://github.com/SAP-samples/contexttab`; +export const sap_rpt_one_oss = (): string[] => { + const installSnippet = `pip install git+https://github.com/SAP-samples/sap-rpt-1-oss`; const classificationSnippet = `# Run a classification task from sklearn.datasets import load_breast_cancer from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split -from contexttab import ConTextTabClassifier +from sap_rpt_oss import SAP_RPT_OSS_Classifier # Load sample data X, y = load_breast_cancer(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42) -# Initialize a classifier -# You can omit checkpoint and checkpoint_revision to use the default model -clf = ConTextTabClassifier(checkpoint="l2/base.pt", checkpoint_revision="v1.0.0", bagging=1, max_context_size=2048) +# Initialize a classifier, 8k context and 8-fold bagging gives best performance, reduce if running out of memory +clf = SAP_RPT_OSS_Classifier(max_context_size=8192, bagging=8) clf.fit(X_train, y_train) @@ -187,8 +186,7 @@ from sklearn.datasets import fetch_openml from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split -from contexttab import ConTextTabRegressor - +from sap_rpt_oss import SAP_RPT_OSS_Regressor # Load sample data df = fetch_openml(data_id=531, as_frame=True) @@ -198,9 +196,8 @@ y = df.target.astype(float) # Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42) -# Initialize the regressor -# You can omit checkpoint and checkpoint_revision to use the default model -regressor = ConTextTabRegressor(checkpoint="l2/base.pt", checkpoint_revision="v1.0.0", bagging=1, max_context_size=2048) +# Initialize the regressor, 8k context and 8-fold bagging gives best performance, reduce if running out of memory +regressor = SAP_RPT_OSS_Regressor(max_context_size=8192, bagging=8) regressor.fit(X_train, y_train) diff --git a/packages/tasks/src/model-libraries.ts b/packages/tasks/src/model-libraries.ts index 69b0db6223..3ce5e5be2b 100644 --- a/packages/tasks/src/model-libraries.ts +++ b/packages/tasks/src/model-libraries.ts @@ -235,13 +235,6 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = { repoUrl: "https://github.com/Unbabel/COMET/", countDownloads: `path:"hparams.yaml"`, }, - contexttab: { - prettyLabel: "ConTextTab", - repoName: "ConTextTab", - repoUrl: "https://github.com/SAP-samples/contexttab", - countDownloads: `path_extension:"pt"`, - snippets: snippets.contexttab, - }, cosmos: { prettyLabel: "Cosmos", repoName: "Cosmos", @@ -966,6 +959,13 @@ export const MODEL_LIBRARIES_UI_ELEMENTS = { filter: true, countDownloads: `path:"cfg.json"`, }, + "sap-rpt-1-oss": { + prettyLabel: "sap-rpt-1-oss", + repoName: "sap-rpt-1-oss", + repoUrl: "https://github.com/SAP-samples/sap-rpt-1-oss", + countDownloads: `path_extension:"pt"`, + snippets: snippets.sap_rpt_one_oss, + }, sapiens: { prettyLabel: "sapiens", repoName: "sapiens",