@@ -14926,7 +14926,7 @@ This section looks at passing messages so that a programmer doesn't have to do e
1492614926Message passing rules summary:
1492714927
1492814928* [CP.60: Use a `future` to return a value from a concurrent task](#Rconc-future)
14929- * [CP.61: Use an `async()` to spawn a concurrent task ](#Rconc-async)
14929+ * [CP.61: Use `async()` to spawn concurrent tasks ](#Rconc-async)
1493014930* message queues
1493114931* messaging libraries
1493214932
@@ -14954,12 +14954,13 @@ There is no explicit locking and both correct (value) return and error (exceptio
1495414954
1495514955???
1495614956
14957- ### <a name="Rconc-async"></a>CP.61: Use an `async()` to spawn a concurrent task
14957+ ### <a name="Rconc-async"></a>CP.61: Use `async()` to spawn concurrent tasks
1495814958
1495914959##### Reason
1496014960
14961- A `future` preserves the usual function call return semantics for asynchronous tasks.
14962- There is no explicit locking and both correct (value) return and error (exception) return are handled simply.
14961+ Similar to [R.12](#Rr-immediate-alloc), which tells you to avoid raw owning pointers, you should
14962+ also avoid raw threads and raw promises where possible. Use a factory function such as `std::async`,
14963+ which handles spawning or reusing a thread without exposing raw threads to your own code.
1496314964
1496414965##### Example
1496514966
@@ -14974,25 +14975,63 @@ There is no explicit locking and both correct (value) return and error (exceptio
1497414975
1497514976 void async_example()
1497614977 {
14977- try
14978- {
14979- auto v1 = std::async(std::launch::async, read_value, "v1.txt");
14980- auto v2 = std::async(std::launch::async, read_value, "v2.txt");
14981- std::cout << v1.get() + v2.get() << '\n';
14982- }
14983- catch (std::ios_base::failure & fail)
14984- {
14978+ try {
14979+ std::future<int> f1 = std::async(read_value, "v1.txt");
14980+ std::future<int> f2 = std::async(read_value, "v2.txt");
14981+ std::cout << f1.get() + f2.get() << '\n';
14982+ } catch (const std::ios_base::failure& fail) {
1498514983 // handle exception here
1498614984 }
1498714985 }
1498814986
1498914987##### Note
1499014988
14991- Unfortunately, `async()` is not perfect.
14992- For example, there is no guarantee that a thread pool is used to minimize thread construction.
14993- In fact, most current `async()` implementations don't.
14994- However, `async()` is simple and logically correct so until something better comes along
14995- and unless you really need to optimize for many asynchronous tasks, stick with `async()`.
14989+ Unfortunately, `std::async` is not perfect. For example, it doesn't use a thread pool,
14990+ which means that it may fail due to resource exhaustion, rather than queueing up your tasks
14991+ to be executed later. However, even if you cannot use `std::async`, you should prefer to
14992+ write your own `future`-returning factory function, rather than using raw promises.
14993+
14994+ ##### Example (bad)
14995+
14996+ This example shows two different ways to succeed at using `std::future`, but to fail
14997+ at avoiding raw `std::thread` management.
14998+
14999+ void async_example()
15000+ {
15001+ std::promise<int> p1;
15002+ std::future<int> f1 = p1.get_future();
15003+ std::thread t1([p1 = std::move(p1)]() mutable {
15004+ p1.set_value(read_value("v1.txt"));
15005+ });
15006+ t1.detach();
15007+
15008+ std::packaged_task<int()> pt2(read_value, "v2.txt");
15009+ std::future<int> f2 = pt2.get_future();
15010+ std::thread(std::move(pt2)).detach();
15011+
15012+ std::cout << f1.get() + f2.get() << '\n';
15013+ }
15014+
15015+ ##### Example (good)
15016+
15017+ This example shows one way you could follow the general pattern set by
15018+ `std::async`, in a context where `std::async` itself was unacceptable for
15019+ use in production.
15020+
15021+ void async_example(WorkQueue *wq)
15022+ {
15023+ std::future<int> f1 = wq->enqueue([]() {
15024+ return read_value("v1.txt");
15025+ });
15026+ std::future<int> f2 = wq->enqueue([]() {
15027+ return read_value("v2.txt");
15028+ });
15029+ std::cout << f1.get() + f2.get() << '\n';
15030+ }
15031+
15032+ Any threads spawned to execute the code of `read_value` are hidden behind
15033+ the call to `WorkQueue::enqueue`. The user code deals only with `future`
15034+ objects, never with raw `thread`, `promise`, or `packaged_task` objects.
1499615035
1499715036##### Enforcement
1499815037
0 commit comments