@@ -160,13 +160,13 @@ def _generate_report(self):
160160 """
161161 Generates the report for the model
162162 """
163- import datapane as dp
163+ import report_creator as rc
164164 from utilsforecast .plotting import plot_series
165165
166166 # Section 1: Forecast Overview
167- sec1_text = dp . Text (
168- "## Forecast Overview \n "
169- "These plots show your forecast in the context of historical data."
167+ sec1_text = rc . Block (
168+ rc . Heading ( " Forecast Overview" , level = 2 ),
169+ rc . Text ( "These plots show your forecast in the context of historical data." )
170170 )
171171 sec_1 = _select_plot_list (
172172 lambda s_id : plot_series (
@@ -182,21 +182,22 @@ def _generate_report(self):
182182 )
183183
184184 # Section 2: MlForecast Model Parameters
185- sec2_text = dp . Text (
186- "## MlForecast Model Parameters \n "
187- "These are the parameters used for the MlForecast model."
185+ sec2_text = rc . Block (
186+ rc . Heading ( " MlForecast Model Parameters" , level = 2 ),
187+ rc . Text ( "These are the parameters used for the MlForecast model." )
188188 )
189+
189190 blocks = [
190- dp . HTML (
191- s_id [1 ],
191+ rc . Html (
192+ str ( s_id [1 ]) ,
192193 label = s_id [0 ],
193194 )
194195 for _ , s_id in enumerate (self .model_parameters .items ())
195196 ]
196- sec_2 = dp .Select (blocks = blocks ) if len ( blocks ) > 1 else blocks [ 0 ]
197+ sec_2 = rc .Select (blocks = blocks )
197198
198199 all_sections = [sec1_text , sec_1 , sec2_text , sec_2 ]
199- model_description = dp .Text ("mlforecast is a framework to perform time series forecasting using machine learning models"
200+ model_description = rc .Text ("mlforecast is a framework to perform time series forecasting using machine learning models"
200201 "with the option to scale to massive amounts of data using remote clusters."
201202 "Fastest implementations of feature engineering for time series forecasting in Python."
202203 "Support for exogenous variables and static covariates." )
0 commit comments