22
33.. _api.arrays :
44
5- =============
6- pandas arrays
7- =============
5+ ======================================
6+ pandas arrays, scalars, and data types
7+ ======================================
88
99.. currentmodule :: pandas
1010
@@ -141,11 +141,11 @@ Methods
141141 Timestamp.weekday
142142
143143A collection of timestamps may be stored in a :class: `arrays.DatetimeArray `.
144- For timezone-aware data, the ``.dtype `` of a `` DatetimeArray ` ` is a
144+ For timezone-aware data, the ``.dtype `` of a :class: ` arrays. DatetimeArray ` is a
145145:class: `DatetimeTZDtype `. For timezone-naive data, ``np.dtype("datetime64[ns]") ``
146146is used.
147147
148- If the data are tz -aware, then every value in the array must have the same timezone.
148+ If the data are timezone -aware, then every value in the array must have the same timezone.
149149
150150.. autosummary ::
151151 :toctree: api/
@@ -206,7 +206,7 @@ Methods
206206 Timedelta.to_numpy
207207 Timedelta.total_seconds
208208
209- A collection of timedeltas may be stored in a :class: `TimedeltaArray `.
209+ A collection of :class: ` Timedelta ` may be stored in a :class: `TimedeltaArray `.
210210
211211.. autosummary ::
212212 :toctree: api/
@@ -267,8 +267,8 @@ Methods
267267 Period.strftime
268268 Period.to_timestamp
269269
270- A collection of timedeltas may be stored in a :class: `arrays.PeriodArray `.
271- Every period in a `` PeriodArray ` ` must have the same ``freq ``.
270+ A collection of :class: ` Period ` may be stored in a :class: `arrays.PeriodArray `.
271+ Every period in a :class: ` arrays. PeriodArray ` must have the same ``freq ``.
272272
273273.. autosummary ::
274274 :toctree: api/
@@ -383,8 +383,8 @@ Categorical data
383383----------------
384384
385385pandas defines a custom data type for representing data that can take only a
386- limited, fixed set of values. The dtype of a `` Categorical ` ` can be described by
387- a :class: `pandas.api.types. CategoricalDtype `.
386+ limited, fixed set of values. The dtype of a :class: ` Categorical ` can be described by
387+ a :class: `CategoricalDtype `.
388388
389389.. autosummary ::
390390 :toctree: api/
@@ -414,7 +414,7 @@ have the categories and integer codes already:
414414
415415 Categorical.from_codes
416416
417- The dtype information is available on the `` Categorical ` `
417+ The dtype information is available on the :class: ` Categorical `
418418
419419.. autosummary ::
420420 :toctree: api/
@@ -425,21 +425,21 @@ The dtype information is available on the ``Categorical``
425425 Categorical.codes
426426
427427``np.asarray(categorical) `` works by implementing the array interface. Be aware, that this converts
428- the Categorical back to a NumPy array, so categories and order information is not preserved!
428+ the :class: ` Categorical ` back to a NumPy array, so categories and order information is not preserved!
429429
430430.. autosummary ::
431431 :toctree: api/
432432
433433 Categorical.__array__
434434
435- A `` Categorical `` can be stored in a `` Series `` or `` DataFrame ` `.
435+ A :class: ` Categorical ` can be stored in a :class: ` Series ` or :class: ` DataFrame `.
436436To create a Series of dtype ``category ``, use ``cat = s.astype(dtype) `` or
437437``Series(..., dtype=dtype) `` where ``dtype `` is either
438438
439439* the string ``'category' ``
440- * an instance of :class: `~pandas.api.types. CategoricalDtype `.
440+ * an instance of :class: `CategoricalDtype `.
441441
442- If the Series is of dtype `` CategoricalDtype ` `, ``Series.cat `` can be used to change the categorical
442+ If the :class: ` Series ` is of dtype :class: ` CategoricalDtype `, ``Series.cat `` can be used to change the categorical
443443data. See :ref: `api.series.cat ` for more.
444444
445445.. _api.arrays.sparse :
@@ -488,7 +488,7 @@ we recommend using :class:`StringDtype` (with the alias ``"string"``).
488488
489489 StringDtype
490490
491- The ``Series.str `` accessor is available for `` Series ` ` backed by a :class: `arrays.StringArray `.
491+ The ``Series.str `` accessor is available for :class: ` Series ` backed by a :class: `arrays.StringArray `.
492492See :ref: `api.series.str ` for more.
493493
494494
@@ -498,7 +498,7 @@ Boolean data with missing values
498498--------------------------------
499499
500500The boolean dtype (with the alias ``"boolean" ``) provides support for storing
501- boolean data (True, False values ) with missing values, which is not possible
501+ boolean data (`` True ``, `` False `` ) with missing values, which is not possible
502502with a bool :class: `numpy.ndarray `.
503503
504504.. autosummary ::
0 commit comments