@@ -20,7 +20,7 @@ def test_cycle_component_deterministic(rng):
2020 cycle = st .CycleComponent (
2121 name = "cycle" , cycle_length = 12 , estimate_cycle_length = False , innovations = False
2222 )
23- params = {"cycle " : np .array ([1.0 , 1.0 ], dtype = config .floatX )}
23+ params = {"params_cycle " : np .array ([1.0 , 1.0 ], dtype = config .floatX )}
2424 x , y = simulate_from_numpy_model (cycle , rng , params , steps = 12 * 12 )
2525
2626 assert_pattern_repeats (y , 12 , atol = ATOL , rtol = RTOL )
@@ -30,7 +30,10 @@ def test_cycle_component_with_dampening(rng):
3030 cycle = st .CycleComponent (
3131 name = "cycle" , cycle_length = 12 , estimate_cycle_length = False , innovations = False , dampen = True
3232 )
33- params = {"cycle" : np .array ([10.0 , 10.0 ], dtype = config .floatX ), "dampening_factor_cycle" : 0.75 }
33+ params = {
34+ "params_cycle" : np .array ([10.0 , 10.0 ], dtype = config .floatX ),
35+ "dampening_factor_cycle" : 0.75 ,
36+ }
3437 x , y = simulate_from_numpy_model (cycle , rng , params , steps = 100 )
3538
3639 # check that cycle dampens to zero over time
@@ -42,7 +45,7 @@ def test_cycle_component_with_innovations_and_cycle_length(rng):
4245 name = "cycle" , estimate_cycle_length = True , innovations = True , dampen = True
4346 )
4447 params = {
45- "cycle " : np .array ([1.0 , 1.0 ], dtype = config .floatX ),
48+ "params_cycle " : np .array ([1.0 , 1.0 ], dtype = config .floatX ),
4649 "length_cycle" : 12.0 ,
4750 "dampening_factor_cycle" : 0.95 ,
4851 "sigma_cycle" : 1.0 ,
@@ -62,7 +65,7 @@ def test_cycle_multivariate_deterministic(rng):
6265 innovations = False ,
6366 observed_state_names = ["data_1" , "data_2" , "data_3" ],
6467 )
65- params = {"cycle " : np .array ([[1.0 , 1.0 ], [2.0 , 2.0 ], [3.0 , 3.0 ]], dtype = config .floatX )}
68+ params = {"params_cycle " : np .array ([[1.0 , 1.0 ], [2.0 , 2.0 ], [3.0 , 3.0 ]], dtype = config .floatX )}
6669 x , y = simulate_from_numpy_model (cycle , rng , params , steps = 12 * 12 )
6770
6871 # Check that each variable has a cyclical pattern with the expected period
@@ -116,7 +119,7 @@ def test_cycle_multivariate_with_dampening(rng):
116119 observed_state_names = ["data_1" , "data_2" , "data_3" ],
117120 )
118121 params = {
119- "cycle " : np .array ([[10.0 , 10.0 ], [20.0 , 20.0 ], [30.0 , 30.0 ]], dtype = config .floatX ),
122+ "params_cycle " : np .array ([[10.0 , 10.0 ], [20.0 , 20.0 ], [30.0 , 30.0 ]], dtype = config .floatX ),
120123 "dampening_factor_cycle" : 0.75 ,
121124 }
122125 x , y = simulate_from_numpy_model (cycle , rng , params , steps = 100 )
@@ -144,7 +147,7 @@ def test_cycle_multivariate_with_innovations_and_cycle_length(rng):
144147 observed_state_names = ["data_1" , "data_2" , "data_3" ],
145148 )
146149 params = {
147- "cycle " : np .array ([[1.0 , 1.0 ], [2.0 , 2.0 ], [3.0 , 3.0 ]], dtype = config .floatX ),
150+ "params_cycle " : np .array ([[1.0 , 1.0 ], [2.0 , 2.0 ], [3.0 , 3.0 ]], dtype = config .floatX ),
148151 "length_cycle" : 12.0 ,
149152 "dampening_factor_cycle" : 0.95 ,
150153 "sigma_cycle" : np .array ([0.5 , 1.0 , 1.5 ]), # different innov variances per var
0 commit comments