@@ -91,8 +91,8 @@ def _make_geometric_sample(
9191class GeometricSMOTE (BaseOverSampler ):
9292 """Class to to perform over-sampling using Geometric SMOTE.
9393
94- This algorithm is an implementation of Geometric SMOTE, a geometrically
95- enhanced drop-in replacement for SMOTE as presented in [1]_.
94+ This algorithm is an implementation of Geometric SMOTE, a geometrically enhanced
95+ drop-in replacement for SMOTE as presented in [1]_.
9696
9797 Read more in the :ref:`User Guide <user_guide>`.
9898
@@ -123,7 +123,6 @@ class GeometricSMOTE(BaseOverSampler):
123123
124124 Attributes
125125 ----------
126-
127126 sampling_strategy_ : dict
128127 Dictionary containing the information to sample the dataset. The keys
129128 corresponds to the class labels from which to sample and the values
@@ -148,6 +147,24 @@ class GeometricSMOTE(BaseOverSampler):
148147 seed. If `random_state` is already a RandomState instance, it is the same
149148 object.
150149
150+ See Also
151+ --------
152+ SMOTE : Over-sample using SMOTE.
153+
154+ SMOTEN : Over-sample using the SMOTE variant specifically for categorical
155+ features only.
156+
157+ SMOTENC : Over-sample using SMOTE for continuous and categorical features.
158+
159+ SVMSMOTE : Over-sample using SVM-SMOTE variant.
160+
161+ BorderlineSMOTE : Over-sample using Borderline-SMOTE variant.
162+
163+ ADASYN : Over-sample using ADASYN.
164+
165+ KMeansSMOTE : Over-sample applying a clustering before to oversample using
166+ SMOTE.
167+
151168 Notes
152169 -----
153170 See the original paper: [1]_ for more details.
@@ -157,7 +174,6 @@ class GeometricSMOTE(BaseOverSampler):
157174
158175 References
159176 ----------
160-
161177 .. [1] G. Douzas, F. Bacao, "Geometric SMOTE:
162178 a geometrically enhanced drop-in replacement for SMOTE",
163179 Information Sciences, vol. 501, pp. 118-135, 2019.
@@ -168,7 +184,6 @@ class GeometricSMOTE(BaseOverSampler):
168184
169185 Examples
170186 --------
171-
172187 >>> from collections import Counter
173188 >>> from sklearn.datasets import make_classification
174189 >>> from imblearn.over_sampling import \
@@ -182,7 +197,6 @@ class GeometricSMOTE(BaseOverSampler):
182197 >>> X_res, y_res = gsmote.fit_resample(X, y)
183198 >>> print('Resampled dataset shape %s' % Counter(y_res))
184199 Resampled dataset shape Counter({{0: 900, 1: 900}})
185-
186200 """
187201
188202 def __init__ (
0 commit comments