Skip to content

A Python Jupyter Notebook project that uses the World Bank API to explore global economic and health indicators — including GDP per capita, life expectancy, and education spending — through automated data retrieval, cleaning, and analysis.

Notifications You must be signed in to change notification settings

WalterL1984/PythonAPI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

UNData API Exploration

This project re-creates the UNData exploration exercise using live data from the World Bank API instead of static CSV files.
It demonstrates how to programmatically gather, clean, and merge international development indicators using Python and pandas.

📊 Key Objectives

  • Retrieve GDP per capita (PPP, constant 2017 international $) data using the World Bank Indicators API.
  • Retrieve life expectancy at birth (total years) data using the same API.
  • Merge datasets to analyze the relationship between economic and health outcomes.
  • Enhance the dataset by adding country metadata (region, income level, capital city) from the World Bank Country API.
  • Filter and visualize specific country data such as the United States and Canada (2000–2021).
  • Use pagination (page parameter) to pull all available records without missing data.
  • Identify and retrieve the indicator code for Public Expenditure on Education (% of GDP).

⚙️ Tools & Libraries

  • Python 3
  • Jupyter Notebook
  • pandas
  • requests
  • matplotlib (optional for visualization)

🌍 Data Source

All data is retrieved live from the World Bank Open Data API:

📈 Example Indicators

Indicator Name Code Description
GDP per capita, PPP (constant 2017 international $) NY.GDP.PCAP.PP.KD Measures economic productivity per person.
Life expectancy at birth, total (years) SP.DYN.LE00.IN Average lifespan at birth.
Public Expenditure on Education (% of GDP) SE.XPD.TOTL.GD.ZS Percentage of GDP spent on public education.

📁 Output

The final dataset (final_df) includes:

  • Country information (name, region, income level, capital city)
  • GDP per capita
  • Life expectancy
  • Education spending (optional)
  • Yearly observations from 2000–2021

About

A Python Jupyter Notebook project that uses the World Bank API to explore global economic and health indicators — including GDP per capita, life expectancy, and education spending — through automated data retrieval, cleaning, and analysis.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published