Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion awswrangler/s3/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from awswrangler.s3._select import select_query
from awswrangler.s3._upload import upload
from awswrangler.s3._wait import wait_objects_exist, wait_objects_not_exist
from awswrangler.s3._write_deltalake import to_deltalake
from awswrangler.s3._write_deltalake import to_deltalake, to_deltalake_streaming
from awswrangler.s3._write_excel import to_excel
from awswrangler.s3._write_orc import to_orc
from awswrangler.s3._write_parquet import store_parquet_metadata, to_parquet
Expand Down Expand Up @@ -49,6 +49,7 @@
"to_csv",
"to_json",
"to_deltalake",
"to_deltalake_streaming",
"to_excel",
"read_excel",
"download",
Expand Down
93 changes: 92 additions & 1 deletion awswrangler/s3/_write_deltalake.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Literal
from typing import TYPE_CHECKING, Any, Iterable, Iterator, Literal

import boto3
import pandas as pd
Expand Down Expand Up @@ -30,6 +30,7 @@ def _set_default_storage_options_kwargs(
defaults = {key.upper(): value for key, value in _utils.boto3_to_primitives(boto3_session=boto3_session).items()}
defaults["AWS_REGION"] = defaults.pop("REGION_NAME")
defaults["AWS_SESSION_TOKEN"] = "" if defaults["AWS_SESSION_TOKEN"] is None else defaults["AWS_SESSION_TOKEN"]

s3_additional_kwargs = s3_additional_kwargs or {}

s3_lock_arguments = {}
Expand Down Expand Up @@ -133,3 +134,93 @@ def to_deltalake(
schema_mode=schema_mode,
storage_options=storage_options,
)


def _df_iter_to_record_batch_reader(
df_iter: Iterable[pd.DataFrame],
*,
index: bool,
dtype: dict[str, str],
target_schema: pa.Schema | None = None,
batch_size: int | None = None,
) -> tuple[pa.RecordBatchReader, pa.Schema]:
it = iter(df_iter)

first_df: pd.DataFrame | None = None
for df in it:
if not df.empty:
first_df = df
break

if first_df is None:
empty_schema = pa.schema([])
empty_reader = pa.RecordBatchReader.from_batches(empty_schema, [])
return empty_reader, empty_schema

schema = target_schema or _data_types.pyarrow_schema_from_pandas(
df=first_df, index=index, ignore_cols=None, dtype=dtype
)

def batches() -> Iterator[pa.RecordBatch]:
first_tbl: pa.Table = _df_to_table(first_df, schema, index, dtype)
for b in first_tbl.to_batches(batch_size) if batch_size is not None else first_tbl.to_batches():
yield b

for df in it:
if df.empty:
continue
tbl: pa.Table = _df_to_table(df, schema, index, dtype)
for b in tbl.to_batches(batch_size) if batch_size is not None else tbl.to_batches():
yield b

reader = pa.RecordBatchReader.from_batches(schema, batches())
return reader, schema


@_utils.check_optional_dependency(deltalake, "deltalake")
@Experimental
def to_deltalake_streaming(
*,
dfs: Iterable[pd.DataFrame],
path: str,
index: bool = False,
mode: Literal["error", "append", "overwrite", "ignore"] = "append",
dtype: dict[str, str] | None = None,
partition_cols: list[str] | None = None,
schema_mode: Literal["overwrite", "merge"] | None = None,
lock_dynamodb_table: str | None = None,
s3_allow_unsafe_rename: bool = False,
boto3_session: boto3.Session | None = None,
s3_additional_kwargs: dict[str, str] | None = None,
batch_size: int | None = None,
target_file_size: int | None = None,
) -> None:
dtype = dtype or {}

storage_options = _set_default_storage_options_kwargs(
boto3_session=boto3_session,
s3_additional_kwargs=s3_additional_kwargs,
s3_allow_unsafe_rename=s3_allow_unsafe_rename,
lock_dynamodb_table=lock_dynamodb_table,
)

reader, schema = _df_iter_to_record_batch_reader(
df_iter=dfs,
index=index,
dtype=dtype,
target_schema=None,
batch_size=batch_size,
)

if len(schema) == 0:
return

deltalake.write_deltalake(
table_or_uri=path,
data=reader,
partition_by=partition_cols,
mode=mode,
schema_mode=schema_mode,
storage_options=storage_options,
target_file_size=target_file_size,
)
176 changes: 175 additions & 1 deletion tests/unit/test_s3_deltalake.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,36 @@
from __future__ import annotations

from typing import Any, Iterator
from typing import Any, Iterable, Iterator

import boto3
import pyarrow as pa
import pytest
from pandas.testing import assert_frame_equal

import awswrangler as wr
import awswrangler.pandas as pd
from awswrangler.s3._write_deltalake import _df_iter_to_record_batch_reader

from .._utils import (
get_time_str_with_random_suffix,
)


def assert_df_equal_unordered(left: pd.DataFrame, right: pd.DataFrame, by: list[str]) -> None:
"""Compare two dataframes ignoring row order and dtypes."""
l2 = left.sort_values(by).reset_index(drop=True)
r2 = right.sort_values(by).reset_index(drop=True)

assert_frame_equal(l2, r2, check_dtype=False, check_like=True)


@pytest.fixture(scope="session")
def lock_dynamodb_table() -> Iterator[str]:
name = f"deltalake_lock_{get_time_str_with_random_suffix()}"
print(f"Table name: {name}")

dynamodb_client = boto3.client("dynamodb")

dynamodb_client.create_table(
TableName=name,
BillingMode="PAY_PER_REQUEST",
Expand Down Expand Up @@ -94,3 +106,165 @@ def test_read_deltalake_partitions(path: str, lock_settings: dict[str, Any]) ->

df2 = wr.s3.read_deltalake(path=path, columns=["c0"], partitions=[("par0", "=", "foo"), ("par1", "=", "1")])
assert df2.shape == (1, 1)


@pytest.mark.parametrize("chunksize", [2, 10])
def test_to_deltalake_streaming_single_commit_overwrite(
path: str,
lock_settings: dict[str, Any],
chunksize: int,
) -> None:
df1 = pd.DataFrame({"c0": [1, 1], "c1": [10, 11], "v": [100, 200]})
df2 = pd.DataFrame({"c0": [2, 2], "c1": [12, 13], "v": [300, 400]})

def dfs() -> Iterable[pd.DataFrame]:
yield df1
yield df2

wr.s3.to_deltalake_streaming(
dfs=dfs(),
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)

out = wr.s3.read_deltalake(path=path)

expected = pd.concat([df1, df2], ignore_index=True)
assert_df_equal_unordered(expected, out, by=["c0", "c1", "v"])


def test_to_deltalake_streaming_creates_one_version_per_run(
path: str,
lock_settings: dict[str, Any],
) -> None:
df_run1_a = pd.DataFrame({"c0": [1], "c1": [10], "v": [111]})
df_run1_b = pd.DataFrame({"c0": [1], "c1": [11], "v": [112]})

wr.s3.to_deltalake_streaming(
dfs=[df_run1_a, df_run1_b],
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)

run1_expected = pd.concat([df_run1_a, df_run1_b], ignore_index=True)
latest_v0 = wr.s3.read_deltalake(path=path)
assert_df_equal_unordered(run1_expected, latest_v0, by=["c0", "c1", "v"])

df_run2_a = pd.DataFrame({"c0": [2], "c1": [12], "v": [221]})
df_run2_b = pd.DataFrame({"c0": [2], "c1": [13], "v": [222]})

wr.s3.to_deltalake_streaming(
dfs=[df_run2_a, df_run2_b],
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)

v0 = wr.s3.read_deltalake(path=path, version=0)
v1 = wr.s3.read_deltalake(path=path, version=1)
run2_expected = pd.concat([df_run2_a, df_run2_b], ignore_index=True)

assert_df_equal_unordered(run1_expected, v0, by=["c0", "c1", "v"])
assert_df_equal_unordered(run2_expected, v1, by=["c0", "c1", "v"])


def test_to_deltalake_streaming_partitions_and_filters(
path: str,
lock_settings: dict[str, Any],
) -> None:
df1 = pd.DataFrame({"c0": [1, 1, 2], "c1": [10, 11, 12], "v": [1, 2, 3]})
df2 = pd.DataFrame({"c0": [2, 3, 3], "c1": [13, 14, 15], "v": [4, 5, 6]})

wr.s3.to_deltalake_streaming(
dfs=[df1, df2],
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)

only_c02 = wr.s3.read_deltalake(
path=path,
partitions=[("c0", "=", "2")],
columns=["v", "c1"],
)
assert set(only_c02["c1"].tolist()) == {12, 13}
assert sorted(only_c02["v"].tolist()) == [3, 4]


def test_to_deltalake_streaming_empty_iterator_is_noop(
path: str,
lock_settings: dict[str, Any],
) -> None:
wr.s3.to_deltalake_streaming(
dfs=[pd.DataFrame({"c0": [1], "c1": [1], "v": [1]})],
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)
baseline = wr.s3.read_deltalake(path=path)

def empty() -> Iterator[pd.DataFrame]:
if False:
yield pd.DataFrame() # pragma: no cover

wr.s3.to_deltalake_streaming(
dfs=empty(),
path=path,
mode="overwrite",
partition_cols=["c0", "c1"],
**lock_settings,
)
after = wr.s3.read_deltalake(path=path)
assert after.equals(baseline)


def test_df_iter_to_record_batch_reader_schema_and_rows() -> None:
df_empty = pd.DataFrame({"a": [], "b": []})
df1 = pd.DataFrame({"a": [1, 2], "b": ["x", "y"]})
df2 = pd.DataFrame({"a": [3], "b": ["z"]})

reader, schema = _df_iter_to_record_batch_reader(
df_iter=[df_empty, df1, df2],
index=False,
dtype={},
target_schema=None,
batch_size=None,
)

assert isinstance(schema, pa.Schema)
assert {f.name for f in schema} == {"a", "b"}

table: pa.Table = reader.read_all()
pdf = table.to_pandas()
assert len(pdf) == 3
assert sorted(pdf["a"].tolist()) == [1, 2, 3]
assert set(pdf["b"].tolist()) == {"x", "y", "z"}


def test_df_iter_to_record_batch_reader_respects_batch_size() -> None:
df1 = pd.DataFrame({"a": list(range(5)), "b": ["x"] * 5})
df2 = pd.DataFrame({"a": list(range(5, 9)), "b": ["y"] * 4})

reader, _ = _df_iter_to_record_batch_reader(
df_iter=[df1, df2],
index=False,
dtype={},
target_schema=None,
batch_size=3,
)

batch_count = 0
row_count = 0
for batch in reader:
batch_count += 1
row_count += batch.num_rows

assert batch_count >= 3
assert row_count == 9