Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions gemma/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -469,6 +469,7 @@ def generate(

batch_size = len(prompts)
prompt_tokens = [self.tokenizer.encode(prompt) for prompt in prompts]
prompt_length = [len(p) for p in prompt_tokens]
min_prompt_len = min(len(p) for p in prompt_tokens)
max_prompt_len = max(len(p) for p in prompt_tokens)
max_seq_len = max_prompt_len + output_len
Expand Down Expand Up @@ -511,6 +512,7 @@ def generate(
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
output_index = torch.tensor(min_prompt_len, dtype=torch.int64).to(
device)
eos_flags_tensor = torch.tensor([False] * batch_size).to(device)

# Prefill up to min_prompt_len tokens, then treat other prefill as
# decode and ignore output.
Expand Down Expand Up @@ -543,6 +545,16 @@ def generate(
device)
output_index = output_index + 1

# Check if all sequences have reached EOS.
batch_eos_idx = (next_token_ids == self.tokenizer.eos_id).nonzero(
as_tuple=True)[0]
for eos_idx in batch_eos_idx:
if output_index >= prompt_length[eos_idx]:
eos_flags_tensor[eos_idx] = True

if eos_flags_tensor.all():
break

# Detokenization.
token_ids = token_ids_tensor.tolist()
results = []
Expand Down
14 changes: 13 additions & 1 deletion scripts/run_xla.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,7 @@ def generate(
input_token_ids_tensor = torch.full((batch_size, min_prompt_len),
tokenizer.pad_id,
dtype=torch.int64)
prompt_length = [len(p) for p in prompt_tokens]
for i, p in enumerate(prompt_tokens):
token_ids_tensor[i, :len(p)] = torch.tensor(p)
input_token_ids_tensor[i, :min_prompt_len] = torch.tensor(
Expand All @@ -152,9 +153,10 @@ def generate(
top_ps_tensor = torch.FloatTensor(top_ps).to(device)
top_ks_tensor = torch.LongTensor(top_ks).to(device)
output_index = torch.tensor(min_prompt_len, dtype=torch.int64).to(device)
eos_flags_tensor = torch.tensor([False] * batch_size).to(device)

if not USE_CUDA:
xm.mark_step()

# Prefill up to min_prompt_len tokens, then treat other prefill as decode and ignore output.
for i in range(max_seq_len - min_prompt_len):
next_token_ids = model(
Expand Down Expand Up @@ -184,6 +186,16 @@ def generate(
if not USE_CUDA:
xm.mark_step()

# Check if all sequences have reached EOS.
batch_eos_idx = (next_token_ids == tokenizer.eos_id).nonzero(
as_tuple=True)[0]
for eos_idx in batch_eos_idx:
if output_index >= prompt_length[eos_idx]:
eos_flags_tensor[eos_idx] = True

if eos_flags_tensor.all():
break

# Detokenization.
token_ids = token_ids_tensor.tolist()
results = []
Expand Down