Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 69 additions & 9 deletions pytensor/link/mlx/dispatch/subtensor.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
from copy import deepcopy

import mlx.core as mx
import numpy as np

from pytensor.link.mlx.dispatch.basic import mlx_funcify
from pytensor.tensor.subtensor import (
AdvancedIncSubtensor,
Expand All @@ -13,12 +16,52 @@
from pytensor.tensor.type_other import MakeSlice


def normalize_indices_for_mlx(indices):
"""Convert numpy integers to Python integers for MLX indexing.

MLX requires index values to be Python int, not np.int64 or other NumPy types.
"""

def to_int(value, element):
"""Convert value to Python int with helpful error message."""
try:
return int(value)
except (TypeError, ValueError) as e:
raise TypeError(
"MLX backend does not support symbolic indices. "
"Index values must be concrete (constant) integers, not symbolic variables. "
f"Got: {element}"
) from e

def normalize_element(element):
if element is None:
return None
elif isinstance(element, slice):
return slice(
normalize_element(element.start),
normalize_element(element.stop),
normalize_element(element.step),
)
elif isinstance(element, mx.array) and element.ndim == 0:
return to_int(element.item(), element)
elif isinstance(element, np.integer):
return to_int(element, element)
else:
return element

return tuple(normalize_element(idx) for idx in indices)


@mlx_funcify.register(Subtensor)
def mlx_funcify_Subtensor(op, node, **kwargs):
idx_list = getattr(op, "idx_list", None)
"""MLX implementation of Subtensor."""
idx_list = op.idx_list

def subtensor(x, *ilists):
indices = indices_from_subtensor([int(element) for element in ilists], idx_list)
# Convert ilist to indices using idx_list (basic subtensor)
indices = indices_from_subtensor(ilists, idx_list)
# Normalize indices to handle np.int64 and other NumPy types
indices = normalize_indices_for_mlx(indices)
if len(indices) == 1:
indices = indices[0]

Expand All @@ -30,10 +73,12 @@ def subtensor(x, *ilists):
@mlx_funcify.register(AdvancedSubtensor)
@mlx_funcify.register(AdvancedSubtensor1)
def mlx_funcify_AdvancedSubtensor(op, node, **kwargs):
idx_list = getattr(op, "idx_list", None)
"""MLX implementation of AdvancedSubtensor."""

def advanced_subtensor(x, *ilists):
indices = indices_from_subtensor(ilists, idx_list)
# Normalize indices to handle np.int64 and other NumPy types
# Advanced indexing doesn't use idx_list or indices_from_subtensor
indices = normalize_indices_for_mlx(ilists)
if len(indices) == 1:
indices = indices[0]

Expand All @@ -43,11 +88,11 @@ def advanced_subtensor(x, *ilists):


@mlx_funcify.register(IncSubtensor)
@mlx_funcify.register(AdvancedIncSubtensor1)
def mlx_funcify_IncSubtensor(op, node, **kwargs):
idx_list = getattr(op, "idx_list", None)
"""MLX implementation of IncSubtensor."""
idx_list = op.idx_list

if getattr(op, "set_instead_of_inc", False):
if op.set_instead_of_inc:

def mlx_fn(x, indices, y):
if not op.inplace:
Expand All @@ -64,7 +109,11 @@ def mlx_fn(x, indices, y):
return x

def incsubtensor(x, y, *ilist, mlx_fn=mlx_fn, idx_list=idx_list):
# Convert ilist to indices using idx_list (basic inc_subtensor)
indices = indices_from_subtensor(ilist, idx_list)
# Normalize indices to handle np.int64 and other NumPy types
indices = normalize_indices_for_mlx(indices)

if len(indices) == 1:
indices = indices[0]

Expand All @@ -74,8 +123,11 @@ def incsubtensor(x, y, *ilist, mlx_fn=mlx_fn, idx_list=idx_list):


@mlx_funcify.register(AdvancedIncSubtensor)
@mlx_funcify.register(AdvancedIncSubtensor1)
def mlx_funcify_AdvancedIncSubtensor(op, node, **kwargs):
if getattr(op, "set_instead_of_inc", False):
"""MLX implementation of AdvancedIncSubtensor."""

if op.set_instead_of_inc:

def mlx_fn(x, indices, y):
if not op.inplace:
Expand All @@ -92,7 +144,15 @@ def mlx_fn(x, indices, y):
return x

def advancedincsubtensor(x, y, *ilist, mlx_fn=mlx_fn):
return mlx_fn(x, ilist, y)
# Normalize indices to handle np.int64 and other NumPy types
# Advanced indexing doesn't use idx_list or indices_from_subtensor
indices = normalize_indices_for_mlx(ilist)

# For advanced indexing, if we have a single tuple of indices, unwrap it
if len(indices) == 1:
indices = indices[0]

return mlx_fn(x, indices, y)

return advancedincsubtensor

Expand Down
170 changes: 168 additions & 2 deletions tests/link/mlx/test_subtensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,19 @@ def test_mlx_IncSubtensor_increment():
assert not out_pt.owner.op.set_instead_of_inc
compare_mlx_and_py([], [out_pt], [])

# Increment slice
out_pt = pt_subtensor.inc_subtensor(x_pt[:, :, 2:], st_pt)
compare_mlx_and_py([], [out_pt], [])

out_pt = pt_subtensor.inc_subtensor(x_pt[:, :, -3:], st_pt)
compare_mlx_and_py([], [out_pt], [])

out_pt = pt_subtensor.inc_subtensor(x_pt[::2, ::2, ::2], st_pt)
compare_mlx_and_py([], [out_pt], [])

out_pt = pt_subtensor.inc_subtensor(x_pt[:, :, :], st_pt)
compare_mlx_and_py([], [out_pt], [])


def test_mlx_AdvancedIncSubtensor_set():
"""Test advanced set operations using AdvancedIncSubtensor."""
Expand Down Expand Up @@ -232,9 +245,12 @@ def test_mlx_subtensor_edge_cases():
compare_mlx_and_py([], [out_pt], [])


@pytest.mark.xfail(reason="MLX indexing with tuples not yet supported")
def test_mlx_subtensor_with_variables():
"""Test subtensor operations with PyTensor variables as inputs."""
"""Test subtensor operations with PyTensor variables as inputs.

This test now works thanks to the fix for np.int64 indexing, which also
handles the conversion of MLX scalar arrays in slice components.
"""
# Test with variable arrays (not constants)
x_pt = pt.matrix("x", dtype="float32")
y_pt = pt.vector("y", dtype="float32")
Expand All @@ -245,3 +261,153 @@ def test_mlx_subtensor_with_variables():
# Set operation with variables
out_pt = pt_subtensor.set_subtensor(x_pt[0, :2], y_pt)
compare_mlx_and_py([x_pt, y_pt], [out_pt], [x_np, y_np])


def test_mlx_subtensor_with_numpy_int64():
"""Test Subtensor operations with np.int64 indices.

This tests the fix for MLX's strict requirement that indices must be
Python int, not np.int64 or other NumPy integer types.
"""
# Test data
x_np = np.arange(12, dtype=np.float32).reshape((3, 4))
x_pt = pt.constant(x_np)

# Single np.int64 index - this was failing before the fix
idx = np.int64(1)
out_pt = x_pt[idx]
compare_mlx_and_py([], [out_pt], [])

# Multiple np.int64 indices
out_pt = x_pt[np.int64(1), np.int64(2)]
compare_mlx_and_py([], [out_pt], [])

# Negative np.int64 index
out_pt = x_pt[np.int64(-1)]
compare_mlx_and_py([], [out_pt], [])

# Mixed Python int and np.int64
out_pt = x_pt[1, np.int64(2)]
compare_mlx_and_py([], [out_pt], [])


def test_mlx_subtensor_slices_with_numpy_int64():
"""Test Subtensor with slices containing np.int64 components.

This tests that slice start/stop/step values can be np.int64.
"""
x_np = np.arange(20, dtype=np.float32)
x_pt = pt.constant(x_np)

# Slice with np.int64 start
out_pt = x_pt[np.int64(2) :]
compare_mlx_and_py([], [out_pt], [])

# Slice with np.int64 stop
out_pt = x_pt[: np.int64(5)]
compare_mlx_and_py([], [out_pt], [])

# Slice with np.int64 start and stop
out_pt = x_pt[np.int64(2) : np.int64(8)]
compare_mlx_and_py([], [out_pt], [])

# Slice with np.int64 step
out_pt = x_pt[:: np.int64(2)]
compare_mlx_and_py([], [out_pt], [])

# Slice with all np.int64 components
out_pt = x_pt[np.int64(1) : np.int64(10) : np.int64(2)]
compare_mlx_and_py([], [out_pt], [])

# Negative np.int64 in slice
out_pt = x_pt[np.int64(-5) :]
compare_mlx_and_py([], [out_pt], [])


def test_mlx_incsubtensor_with_numpy_int64():
"""Test IncSubtensor (set/inc) with np.int64 indices and slices.

This is the main test for the reported issue with inc_subtensor.
"""
# Test data
x_np = np.arange(12, dtype=np.float32).reshape((3, 4))
x_pt = pt.constant(x_np)
y_pt = pt.as_tensor_variable(np.array(10.0, dtype=np.float32))

# Set with np.int64 index
out_pt = pt_subtensor.set_subtensor(x_pt[np.int64(1), np.int64(2)], y_pt)
compare_mlx_and_py([], [out_pt], [])

# Increment with np.int64 index
out_pt = pt_subtensor.inc_subtensor(x_pt[np.int64(1), np.int64(2)], y_pt)
compare_mlx_and_py([], [out_pt], [])

# Set with slice containing np.int64 - THE ORIGINAL FAILING CASE
out_pt = pt_subtensor.set_subtensor(x_pt[:, : np.int64(2)], y_pt)
compare_mlx_and_py([], [out_pt], [])

# Increment with slice containing np.int64 - THE ORIGINAL FAILING CASE
out_pt = pt_subtensor.inc_subtensor(x_pt[:, : np.int64(2)], y_pt)
compare_mlx_and_py([], [out_pt], [])

# Complex slice with np.int64
y2_pt = pt.as_tensor_variable(np.ones((2, 2), dtype=np.float32))
out_pt = pt_subtensor.inc_subtensor(
x_pt[np.int64(0) : np.int64(2), np.int64(1) : np.int64(3)], y2_pt
)
compare_mlx_and_py([], [out_pt], [])


def test_mlx_incsubtensor_original_issue():
"""Test the exact example from the issue report.

This was failing with: ValueError: Slice indices must be integers or None.
"""
x_np = np.arange(9, dtype=np.float64).reshape((3, 3))
x_pt = pt.constant(x_np, dtype="float64")

# The exact failing case from the issue
out_pt = pt_subtensor.inc_subtensor(x_pt[:, :2], 10)
compare_mlx_and_py([], [out_pt], [])

# Verify it also works with set_subtensor
out_pt = pt_subtensor.set_subtensor(x_pt[:, :2], 10)
compare_mlx_and_py([], [out_pt], [])


def test_mlx_advanced_subtensor_with_numpy_int64():
"""Test AdvancedSubtensor with np.int64 in mixed indexing."""
x_np = np.arange(24, dtype=np.float32).reshape((3, 4, 2))
x_pt = pt.constant(x_np)

# Advanced indexing with list, but other dimensions use np.int64
# Note: This creates AdvancedSubtensor, not basic Subtensor
out_pt = x_pt[[0, 2], np.int64(1)]
compare_mlx_and_py([], [out_pt], [])

# Mixed advanced and basic indexing with np.int64 in slice
out_pt = x_pt[[0, 2], np.int64(1) : np.int64(3)]
compare_mlx_and_py([], [out_pt], [])


def test_mlx_advanced_incsubtensor_with_numpy_int64():
"""Test AdvancedIncSubtensor with np.int64."""
x_np = np.arange(15, dtype=np.float32).reshape((5, 3))
x_pt = pt.constant(x_np)

# Value to set/increment - using 4 rows now for vector indexing
y_pt = pt.as_tensor_variable(
np.array(
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]],
dtype=np.float32,
)
)

# Advanced indexing set with vector array indices
indices = np.array([0, 1, 2, 3], dtype=np.int64)
Copy link
Member

@ricardoV94 ricardoV94 Oct 31, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is not testing the "issue of having a scalar np.int64 or slice with an np.int64 entry". My earlier suggestion was to have an array + one of those. The array is what forces it to be "Advanced"

out_pt = pt_subtensor.set_subtensor(x_pt[indices], y_pt)
compare_mlx_and_py([], [out_pt], [])

# Advanced indexing increment
out_pt = pt_subtensor.inc_subtensor(x_pt[indices], y_pt)
compare_mlx_and_py([], [out_pt], [])